Abstract
This paper proposes a new methodology for the automatic detection of magnetic disturbances from magnetic inertial measurement unit (MIMU) sensors based on deep learning. The proposed approach considers magnetometer data as input to a long short-term memory (LSTM) neural network and obtains a labeled time series output with the posterior probabilities of magnetic disturbance. We trained our algorithm on a data set that reproduces a wide range of magnetic perturbations and MIMU motions in a repeatable and reproducible way. The model was trained and tested using 15 folds, which considered independence in sensor, disturbance direction, and signal type. On average, the network can adequately detect the disturbances in 98% of the cases, which represents a significant improvement over current threshold-based detection algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.