Abstract

This work presents a novel approach to automatic detection of long period events (LP) in continuous seismic records. Without any supervised learning, the proposal is based on a simple processing to search for the LP characteristic shape, duration, and band of activity. Continuous raw signals from the seismometer are first filtered into three frequency bands separating lower, central, and upper frequency components. These new signals are then processed in parallel to extract subband envelopes and create a characteristic function that enhances LP features. Experiments to test the proposal are presented using: 1) 2 h of continuous recordings of the Volcano of Deception Island, Antarctica, containing LP events artificially contaminated with seismic background noise to create low signal-to-noise ratio scenarios and 2) a set of earthquake-like computer generated signals, randomly produced and inserted in the continuous records to recreate a testing environment as challenging as possible. A receiver operating curve analysis of the results compared to those of a classical short/long time average approach, provides positive conclusions on the performance of the technique presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.