Abstract

Abstract It is evident that usage of machine learning methods in disease diagnosis has been increasing gradually. In this study, diagnosis of heart disease, which is a very common and important disease, was conducted with such a machine learning system. In this system, a new weighting scheme based on k-nearest neighbour (k-nn) method was utilized as a preprocessing step before the main classifier. Artificial immune recognition system (AIRS) with fuzzy resource allocation mechanism was our used classifier. We took the dataset used in our study from the UCI Machine Learning Database. The obtained classification accuracy of our system was 87% and it was very promising with regard to the other classification applications in the literature for this problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.