Abstract

Atrial fibrillation (AF) and Congestive heart failure (CHF) are increasingly widespread, costly, deadly diseases and are associated with significant morbidity and mortality. In this study, we analyzed three statistical methods for automatic detection of AF and CHF based on the randomness, variability and complexity of the heart beat interval, which is RRI time series. Specifically, we used short RRI time series with 16 beats and employed the normalized root mean square of successive RR differences (RMSSD), the sample entropy and the Shannon entropy. The detection performance was analyzed using four large well documented databases, namely the MIT-BIH Atrial fibrillation (n=23), the MIT-BIH Normal Sinus Rhythm (n=18), the BIDMC Congestive Heart Failure (n=13) and the Congestive Heart Failure RRI databases (n=25). Using thresholds by Receiver Operating Characteristic (ROC) curves, we found that the normalized RMSSD provided the highest accuracy. The overall sensitivity, specificity and accuracy for AF and CHF were 0.8649, 0.9331 and 0.9104, respectively. Regarding CHF detection, the detection rate of CHF (NYHA III-IV) was 0.9113 while CHF (NYHA I-II) was 0.7312, which shows that the detection rate of CHF with higher severity is higher than that of CHF with lower severity. For the clinical 24 hour data (n=42), the overall sensitivity, specificity and accuracy for AF and CHF were 0.8809, 0.9406 and 0.9108, respectively, using normalized RMSSD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.