Abstract

PurposeWhite matter hyperintensity (WMH) is a common feature of brain aging, often linked with cognitive decline and dementia. This study aimed to employ deep learning and radiomics to develop models for detecting cognitive impairment in WMH patients and to analyze the causal relationships among cognitive impairment and related factors. Materials and methodsA total of 79 WMH patients from hospital 1 were randomly divided into a training set (62 patients) and a testing set (17 patients). Additionally, 29 patients from hospital 2 were included as an independent testing set. All participants underwent formal neuropsychological assessments to determine cognitive status. Automated identification and segmentation of WMH were conducted using VB-net, with extraction of radiomics features from cortex, white matter, and nuclei. Four machine learning classifiers were trained on the training set and validated on the testing set to detect cognitive impairment. Model performances were evaluated and compared. Causal analyses were conducted among cortex, white matter, nuclei alterations, and cognitive impairment. ResultsAmong the models, the logistic regression (LR) model based on white matter features demonstrated the highest performance, achieving an AUC of 0.819 in the external test dataset. Causal analyses indicated that age, education level, alterations in cortex, white matter, and nuclei were causal factors of cognitive impairment. ConclusionThe LR model based on white matter features exhibited high accuracy in detecting cognitive impairment in WMH patients. Furthermore, the possible causal relationships among alterations in cortex, white matter, nuclei, and cognitive impairment were elucidated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.