Abstract

To propose and evaluate a convolutional neural network (CNN) algorithm for automatic detection and segmentation of mucosal thickening (MT) and mucosal retention cysts (MRCs) in the maxillary sinus on low-dose and full-dose cone-beam computed tomography (CBCT). A total of 890 maxillary sinuses on 445 CBCT scans were analyzed. The air space, MT, and MRCs in each sinus were manually segmented. Low-dose CBCTs were divided into training, training-monitoring, and testing datasets at a 7:1:2 ratio. Full-dose CBCTs were used as a testing dataset. A three-step CNN algorithm built based on V-Net and support vector regression was trained on low-dose CBCTs and tested on the low-dose and full-dose datasets. Performance for detection of MT and MRCs using area under the curves (AUCs) and for segmentation using Dice similarity coefficient (DSC) was evaluated. For the detection of MT and MRCs, the algorithm achieved AUCs of 0.91 and 0.84 on low-dose scans and of 0.89 and 0.93 on full-dose scans, respectively. The median DSCs for segmenting the air space, MT, and MRCs were 0.972, 0.729, and 0.678 on low-dose scans and 0.968, 0.663, and 0.787 on full-dose scans, respectively. There were no significant differences in the algorithm performance between low-dose and full-dose CBCTs. The proposed CNN algorithm has the potential to accurately detect and segment MT and MRCs in maxillary sinus on CBCT scans with low-dose and full-dose protocols. An implementation of this artificial intelligence application in daily practice as an automated diagnostic and reporting system seems possible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.