Abstract

Automatic detection and removal of muscle artifacts plays an important role in long-term scalp electroencephalography (EEG) monitoring, and muscle artifact detection algorithms have been intensively investigated. This paper proposes an algorithm for automatic muscle artifacts detection and removal using canonical correlation analysis (CCA) and wavelet transform (WT) in epochs from long-term EEG recordings. The proposed method first performs CCA analysis and then conducts wavelet decomposition on the canonical components within a specific frequency range and selects a subset of the wavelet coefficients for subsequent processing. A set of features, including the mean of wavelet coefficients and the canonical component autocorrelation values, are extracted from the above analysis and subsequently used as input in a random forest (RF) classifier. The RF classifier produces a similarity measure between observations and selects a subset of the most important features by comparing the original data with a set of synthetic data that is constructed based on the latter. The RF predictor output is finally used in combination with unsupervised clustering algorithms to discriminate between contaminated and non-contaminated EEG epochs. The proposed method is evaluated in epochs of 30 min from scalp EEG recordings obtained from three patients with epilepsy and yields a sensitivity of 71% and 80%, as well as a specificity of 81% and 85% for k-means and spectral clustering, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.