Abstract

Welding quality detection is a critical link in modern manufacturing, and the weld bead location is a prerequisite for the high-precision assessment of welding quality. It is generally necessary for weld bead detection to be accomplished in the context of complex industrial environments. However, conventional detection and location methods based on specific detection conditions or prior knowledge lack accuracy and adaptability. To precisely detect and locate the weld beads in real industrial environments, a novel weld bead detection and location algorithm is proposed based on deep convolutional neural networks. Because there is no open data set of weld beads and the samples in real industrial applications are insufficient for effective model training of the deep convolutional neural network, a novel data augmentation method based on a deep semantic segmentation network is proposed to increase the sample diversity and enlarge the data set. Then, a dynamic sample updating strategy is put forward to cover more welding situations. Finally, faced with the weak-feature and weak-texture characteristics of weld beads, a simplified YOLOV3 model is proposed to realize end-to-end weld bead location. Experiments demonstrate that the proposed method could effectively satisfy the robustness and precision requirements for weld bead detection and location combined with a deep semantic segmentation network and simplified YOLOV3 model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.