Abstract
This paper investigates the methods to detect and classify marmoset vocalizations automatically using a large data set of marmoset vocalizations and deep learning techniques. For vocalization detection, neural networks-based methods, including deep neural network (DNN) and recurrent neural network with long short-term memory units, are designed and compared against a conventional rule-based detection method. For vocalization classification, three different classification algorithms are compared, including a support vector machine (SVM), DNN, and long short-term memory recurrent neural networks (LSTM-RNNs). A 1500-min audio data set containing recordings from four pairs of marmoset twins and manual annotations is employed for experiments. Two test sets are built according to whether the test samples are produced by the marmosets in the training set (test set I) or not (test set II). Experimental results show that the LSTM-RNN-based detection method outperformed others and achieved 0.92% and 1.67% frame error rate on these two test sets. Furthermore, the deep learning models obtained higher classification accuracy than the SVM model, which was 95.60% and 91.67% on the two test sets, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.