Abstract

Ultrasonic testing (UT) is commonly used to inspect the geometric shape of internal damage in composite materials and the test results need to be interpreted by trained experts. In this work, an automatic signal classification method based on deep learning is proposed for depth estimation of the detects introduced by low-velocity impact (LVI) in carbon fiber reinforced plastics (CFRPs). Three kinds of neural networks, LSTM, CNN, and CNN-LSTM are used to analyze the attributes with different depths. Then, trained models are applied to identify the depth information of impact damage. The results show that the CNN-LSTM model is a more accurate in-depth classification for LVI defects in CFRP based on A-scan signals than the other two structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.