Abstract
The kernel of industrial advanced process control (APC) lies in the formulation and solution of model predictive control (MPC) problems, which specify the controller moves according to the solution of an optimal control problem at each sampling time. A significant challenge is the online computation for large-scale industrial systems. As the state-of-the-art APC technology, the Shell–Yokogawa Platform for Advanced Control and Estimation (PACE) has adopted a systematic framework of handling dynamic optimization of large-scale systems, where an automatic decomposition procedure generates subsystems for distributed MPC. The decomposition is implemented on network representations of the MPC models that capture interactions among process variables, with community detection used to maximize the statistical significance of the subnetworks with preferred internal interconnections. This paper introduces the fundamentals of such a decomposition approach and this functionality in PACE, followed by a case study on a crude distillation process to showcase its industrial application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.