Abstract

Holography is a technique for capturing the hologram of a three-dimensional scene. In many applications, it is often pertinent to retain specific items of interest in the hologram, rather than retaining the full information, which may cause distraction in the analytical process that follows. For a real optical image that is captured with a camera or scanner, this process can be realized by applying image segmentation algorithms to decompose an image into its constituent entities. However, because it is different from an optical image, classic image segmentation methods cannot be applied directly to a hologram, as each pixel in the hologram carries holistic, rather than local, information of the object scene. In this paper, we propose a method to perform automatic decomposition of a complex hologram based on a recently proposed technique called the virtual diffraction plane (VDP) framework. Briefly, a complex hologram is back-propagated to a hypothetical plane known as the VDP. Next, the image on the VDP is automatically decomposed, through the use of the segmentation on the magnitude of the VDP image, into multiple sub-VDP images, each representing the diffracted waves of an isolated entity in the scene. Finally, each sub-VDP image is reverted back to a hologram. As such, a complex hologram can be decomposed into a plurality of subholograms, each representing a discrete object in the scene. We have demonstrated the successful performance of our proposed method by decomposing a complex hologram that is captured through the optical scanning holography (OSH) technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.