Abstract
It is important to maintain the safety of road driving by automatically performing a series of processes to automatically measure and repair damage to the road pavement. However, road pavements include not only damages such as longitudinal cracks, transverse cracks, alligator cracks, and potholes, but also various elements such as manholes, road marks, oil marks, shadows, and joints. Therefore, in order to separate categories that exist in various road pavements, in this paper, 13,500 digital, IR, and MSX images were collected and nine categories were automatically classified by DarkNet. The DarkNet classification accuracies of digital images, IR images, and MSX images are 97.4%, 80.1%, and 91.1%, respectively. The MSX image is a enhanced image of the IR image and showed an average of 6% lower accuracy than the digital image but an average of 11% higher accuracy than the IR image. Therefore, MSX images can play a complementary role if DarkNet classification is performed together with digital images. In this paper, a method for detecting the directionality of each crack through a two-dimensional wavelet transform is presented, and this result can contribute to future research on detecting cracks in pavements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.