Abstract
AbstractRecently, general purpose GPU (GPGPU) programming has spread rapidly after CUDA was first introduced to write parallel programs in high-level languages for NVIDIA GPUs. While a GPU exploits data parallelism very effectively, task-level parallelism is exploited as a multi-threaded program on a multicore CPU. For such a heterogeneous platform that consists of a multicore CPU and GPU, we propose an automatic code synthesis framework that takes a process network model specification as input and generates a multithreaded CUDA code. With the model based specification, one can explicitly specify both function-level and loop-level parallelism in an application and explore the wide design space in mapping of function blocks and selecting the communication methods between CPU and GPU. The proposed technique is complementary to other high-level methods of CUDA programming.KeywordsGPGPUCUDAmodel-based designautomatic code synthesis
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.