Abstract

Temperature-based death time estimation is based either on simple phenomenological models of corpse cooling or on detailed physical heat transfer models. The latter are much more complex but allow a higher accuracy of death time estimation, as in principle, all relevant cooling mechanisms can be taken into account.Here, a complete workflow for finite element-based cooling simulation is presented. The following steps are demonstrated on a CT phantom: Computer tomography (CT) scan Segmentation of the CT images for thermodynamically relevant features of individual geometries and compilation in a geometric computer-aided design (CAD) model Conversion of the segmentation result into a finite element (FE) simulation model Computation of the model cooling curve(MOD) Calculation of the cooling time(CTE) For the first time in FE-based cooling time estimation, the steps from the CT image over segmentation to FE model generation are performed semi-automatically. The cooling time calculation results are compared to cooling measurements performed on the phantoms under controlled conditions. In this context, the method is validated using a CT phantom. Some of the phantoms' thermodynamic material parameters had to be determined via independent experiments.Moreover, the impact of geometry and material parameter uncertainties on the estimated cooling time is investigated by a sensitivity analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.