Abstract

An approach to control tethered wings for airborne wind energy is proposed. A fixed length of the lines is considered, and the aim of the control system is to obtain figure-eight crosswind trajectories. The proposed technique is based on the notion of the wing's "velocity angle" and, in contrast with most existing approaches, it does not require a measurement of the wind speed or of the effective wind at the wing's location. Moreover, the proposed approach features few parameters, whose effects on the system's behavior are very intuitive, hence simplifying tuning procedures. A simplified model of the steering dynamics of the wing is derived from first-principle laws, compared with experimental data and used for the control design. The control algorithm is divided into a low-level loop for the velocity angle and a high-level guidance strategy to achieve the desired flight patterns. The robustness of the inner loop is verified analytically, and the overall control system is tested experimentally on a small-scale prototype, with varying wind conditions and using different wings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.