Abstract

Detection of craters is important not only for planetary research but also for engineering applications. Although the existing crater detection approaches (CDAs) based on terrain analysis consider the topographic information of craters, they do not take into account the spatial structural information of real craters. In this article, we propose an automatic crater detection approach by training random forest classifiers with data from legacy crater map and spatial structural information of craters derived from digital terrain analysis. In the proposed two-stage approach, first, the cells in a legacy crater map are used as samples to train the random forest classifier at a cell level based on multiscale landform element information. This trained classifier is then applied to identify crater candidates in the areas of interest. Second, an object-level random forest classifier is trained with radial elevation profiles of craters and is subsequently applied to evaluate whether each crater candidate is real. A case study using the Lunar Orbiter Laser Altimeter crater map and lunar digital elevation model with 500-m resolution showed that the proposed approach performs better than AutoCrat (a representative CDA), and can mine the implicit expert knowledge on the spatial structures of real craters from legacy crater maps. The proposed approach could be extended to extract other geomorphologic types in similar application situations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.