Abstract

Radial MRI is typically used for scans that are sensitive to unavoidable motion. While the translational motion artifact can be easily removed from the radial trajectory data by phase correction, correction of rotational motion still remains a challenge in radial MRI. We present a novel method to refocus the image corrupted by view-to-view motion in the view-interleaved radial MRI data. In this method, the error in rotational view angles was modeled as a polynomial function of the view order and the model parameters were estimated by minimizing the self-navigator image metrics such as image entropy, gradient entropy, normalized gradient squared and mean square difference. Translational motion correction was conducted by aligning the projection profiles. Simulation studies were conducted to demonstrate the robustness of both translational and rotational motion correction methods in different noise levels. The proposed method was successfully applied to correct for motion of healthy subjects. Substantial motion correction with relative error of less than 5% was achieved by using either first- or second-order model with the image metrics. This study demonstrates the potential of the method for motion-sensitive applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.