Abstract
SAT and propagation solvers often underperform for optimisation models whose objective sums many single-variable terms. MaxSAT solvers avoid this by detecting and exploiting cores: subsets of these terms that cannot collectively take their lower bounds. Previous work has shown manual analysis of cores can help define model reformulations likely to speed up solving for many model instances. This paper presents a method to automate this process. For each selected core the method identifies the instance constraints that caused it; infers the model constraints and parameters that explain how these instance constraints were formed; and learns the conditions that made those model constraint instances generate cores, while others did not. It then uses this information to reformulate the objective. The empirical evaluation shows this method can produce useful reformulations. Importantly, the method can be useful in many other situations that require explaining a set of constraints.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.