Abstract

This paper presents a new approach to the automatic control of the turn-on angle used to excite the switched-reluctance motor (SRM). The control algorithm determines the turn-on angle that supports the most efficient operation of the motor drive system, and consists of two pieces. The first piece of the control technique monitors the position of the first peak of the phase current (/spl theta//sub p/) and seeks to align this position with the angle where the inductance begins to increase (/spl theta//sub p/). The second piece of the controller monitors the peak phase current and advances the turn-on angle if the commanded reference current cannot be produced by the controller. The first piece of the controller tends to be active below base speed of the SRM, where phase currents can be built easily by the inverter and /spl theta//sub p/ is relatively independent of /spl theta//sub m/. The second piece of the controller is active above base speed, where the peak of the phase currents tends to naturally occur at /spl theta//sub m/, regardless of the current amplitude. The two pieces of the controller naturally exchange responsibility as a result of a change in command or operating point. The motor, inverter and control system are modeled in Simulink to demonstrate the operation of the system. The control technique is then applied to an experimental SRM system. Experimental operation documents that the technique provides for efficient operation of the drive.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call