Abstract

Based on an automatic feedback adjustment of an additional parameter of a dynamical system, we propose a strategy for controlling periodic orbits of desired periods in chaotic dynamics and tracking them toward the set of unstable periodic orbits embedded within the original chaotic attractor. The method does not require information on the system to be controlled, nor on any reference states for the targets, and it overcomes some of the difficulties encountered by other techniques. Assessments of the method's effectiveness and robustness are given by means of the application of the technique to the stabilization of unstable periodic orbits in both discrete- and continuous-time systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.