Abstract
Entity Set Expansion (ESE) is a valuable task that aims to find entities of the target semantic class described by given seed entities. Various Natural Language Processing (NLP) and Information Retrieval (IR) downstream applications have benefited from ESE due to its ability to discover knowledge. Although existing corpus-based ESE methods have achieved great progress, they still rely on corpora with high-quality entity information annotated, because most of them need to obtain the context patterns through the position of the entity in a sentence. Therefore, the quality of the given corpora and their entity annotation has become the bottleneck that limits the performance of such methods. To overcome this dilemma and make the ESE models free from the dependence on entity annotation, our work aims to explore a new ESE paradigm, namely corpus-independent ESE. Specifically, we devise a context pattern generation module that utilizes autoregressive language models (e.g., GPT-2) to automatically generate high-quality context patterns for entities. In addition, we propose the GAPA, a novel ESE framework that leverages the aforementioned <bold xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">G</b> ener <bold xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">A</b> ted <bold xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">PA</b> tterns to expand target entities. Extensive experiments and detailed analyses on three widely used datasets demonstrate the effectiveness of our method. All the codes of our experiments are available at <uri xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">https://github.com/geekjuruo/GAPA</uri> .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Knowledge and Data Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.