Abstract

The rapid growth of device densities on silicon has made it feasible to deploy reconfigurable hardware as a highly parallel computing platform. However, one of the obstacles to the wider acceptance of this technology is its programmability. The application needs to be programmed in hardware description languages or an assembly equivalent, whereas most application programmers are used to the algorithmic programming paradigm. SA-C has been proposed as an expression-oriented language designed to implicitly express data parallel operations. The Morphosys project proposes an SoC architecture consisting of reconfigurable hardware that supports a data-parallel, SIMD computational model. This paper describes a compiler framework to analyze SA-C programs, perform optimizations, and automatically map the application onto the Morphosys architecture. The mapping process is static and it involves operation scheduling, processor allocation and binding, and register allocation in the context of the Morphosys architecture. The compiler also handles issues concerning data streaming and caching in order to minimize data transfer overhead. We have compiled some important image-processing kernels, and the generated schedules reflect an average speedup in execution times of up to 6× compared to the execution on 800 MHz Pentium III machines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.