Abstract

Schizophrenia is one of the serious mental disorders, which can suspend the patient from all aspects of life. In this paper we introduced a new method based on the adaptive neuro fuzzy inference system (ANFIS) to classify recorded electroencephalogram (EEG) signals from 14 schizophrenia patients and 14 age-matched control participants. Sixteen EEG channels from 19 main channels that had the most discriminatory information were selected. Possible artifacts of these channels were eliminated with the second-order Butterworth filter. Four features, Shannon entropy, spectral entropy, approximate entropy, and the absolute value of the highest slope of autoregressive coefficients (AVLSAC) were extracted from each selected EEG channel in 5 frequency sub-bands, Delta, Theta, Alpha, Beta, and Gamma. Forty-six features were introduced among the 640 possible ones, and the results included accuracies of near 100%, 98.89%, and 95.59% for classifiers of ANFIS, support vector machine (SVM), and artificial neural network (ANN), respectively. Also, our results show that channels of alpha of O1, theta and delta of Fz and F8, and gamma of Fp1 have the most discriminatory information between the two groups. The performance of our proposed model was also compared with the recently published approaches. This study led to presenting a new decision support system (DSS) that can receive a person's EEG signal and separates the schizophrenia patient and healthy subjects with high accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.