Abstract
The New Vacuum Solar Telescope is one of the most important solar telescopes in China. However, in the process of reconstructing high-resolution solar data, the data may be distorted by thin film interference fringes. In this paper, an automatic classification method based on deep learning is proposed to distinguish fringe-contained data and fringe-free data, employing the Adaptive Wavelet Transform to construct the sample data set while transfer learning is utilized to train the classification model. The experimental results show that classification accuracy of the proposed method can reach up to 99.3%. This proposed method can make the high-resolution reconstruction pipeline run automatically whether the solar data contains fringes or not.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Publications of the Astronomical Society of the Pacific
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.