Abstract
This paper addresses the task of classifying documents into formal or informal style. We studied the main characteristics of each style in order to choose features that allowed us to train classifiers that can distinguish between the two styles. We built our data set by collecting documents for both styles, from different sources. We tested several classification algorithms, namely Decision Trees, Naive Bayes, and Support Vector Machines, to choose the classifier that leads to the best classification results. We performed attribute selection in order to determine the contribution of each feature to our model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.