Abstract
BackgroundDetecting human drowsiness during some critical works like vehicle driving, crane operating, mining blasting, etc. is one of the safeguards to prevent accidents. Among several drowsiness detection (DD) methods, a combination of neuroscience and computer science knowledge has a better ability to differentiate awake and sleep states. Most of the current models are implemented using multi-sensors electroencephalogram (EEG) signals, multi-domain features, predefined features selection algorithms. Therefore, there is great interest in the method of detecting drowsiness on embedded platforms with improved accuracy using generalized best features. New-methodSingle-channel EEG based drowsiness detection (DD) model is proposed in this by utilizing wavelet packet transform (WPT) to extract the time-domain features from considered channel EEG. The dimension of the feature vector is reduced by the proposed novel feature selection method. ResultsThe proposed model on freely available real-time sleep analysis EEG and Simulated Virtual Driving Driver (SVDD) EEG achieves 94.45% and 85.3% accuracy, respectively. Comparison-with-existing-methodThe results show that the proposed DD method produces better accuracy compared to the state-of-the-art using the physiological dataset with the proposed time-domain sub-band-based features and feature selection method. This task of detecting drowsiness by analyzing the 5-seconds EEG signal with four features is an improvement to my previous work on detecting drowsiness using a 30-seconds EEG signal with 66 features. ConclusionsTime-domain features obtained from EEG time-domain sub-bands collected using WPT achieving excellent accuracy rate by selecting unique optimization features for all subjects by the proposed feature selection algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.