Abstract

Building information modeling has demonstrated its advantage to support design coordination, specifically for automatic clash detection. Detecting clashes helps us identify problems, but the process for solving these problems is still manual and time-consuming. This paper proposes using network theory to improve clash resolution by optimizing the clash correction sequence. Building systems are often interdependent of each other, and the dependency relations between building components propagate the impacts of clashes. Ignoring the dependency may cause new clashes when solving a clash or cause iterative adjustments for a single building component. However, a well-organized clash correction sequence can help reduce these issues. Therefore, it is necessary to holistically discuss the clash correction sequence by considering the dependence between clashes. This paper analyzes clash dependencies based on building component dependency relations. We design an optimization algorithm for determining the optimal sequence based on the clash dependency network to minimize feedback dependency, which may cause design rework on a project in project practice. The proposed method is validated on a real building project. After comparing with the natural sequence detected by commercial software, we find that the optimized sequence significantly reduces feedback and automatically groups dependent clashes, which facilitates design coordination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.