Abstract

The chemical kinetics of hydrocarbon fuels determines the combustion characteristics and pollutant emissions of homogeneous charge compression ignition (HCCI) engines. Including comprehensive chemical mechanisms in HCCI engine models provides accurate predictive results that can be used to improve engine designs. However, a large number of simulations are usually required to optimize an HCCI engine, and the use of comprehensive chemical mechanisms is prohibitive. Furthermore, an increased demand for surrogate fuels that better represent real fuels has resulted in further increases in the size of chemical mechanisms as the carbon number of surrogate fuel species and the number of fuel components considered increases. Consequently, reduced mechanisms of smaller sizes, which are able to represent their corresponding comprehensive mechanisms over a wide range of conditions are necessary. This paper presents an approach that fully automates the process of reducing comprehensive chemical mechanisms of fuels for...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.