Abstract

This study was designed to develop and verify a fully automated cephalometry landmark identification system, based on multi-stage convolutional neural networks (CNNs) architecture, using a combination dataset. In this research, we trained and tested multi-stage CNNs with 430 lateral and 430 MIP lateral cephalograms synthesized by cone-beam computed tomography (CBCT) to make a combination dataset. Fifteen landmarks were manually and respectively identified by experienced examiner, at the preprocessing phase. The intra-examiner reliability was high (ICC = 0.99) in manual identification. The results of prediction of the system for average mean radial error (MRE) and standard deviation (SD) were 1.03 mm and 1.29 mm, respectively. In conclusion, different types of image data might be the one of factors that affect the prediction accuracy of a fully-automated landmark identification system, based on multi-stage CNNs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.