Abstract

The analysis of cell characteristics from high-resolution digital histopathological images is the standard clinical practice for the diagnosis and prognosis of cancer. Yet, it is a rather exhausting process for pathologists to examine the cellular structures manually in this way. Automating this tedious and time-consuming process is an emerging topic of the histopathological image-processing studies in the literature. This paper presents a two-stage segmentation method to obtain cellular structures in high-dimensional histopathological images of renal cell carcinoma. First, the image is segmented to superpixels with simple linear iterative clustering (SLIC) method. Then, the obtained superpixels are clustered by the state-of-the-art clustering-based segmentation algorithms to find similar superpixels that compose the cell nuclei. Furthermore, the comparison of the global clustering-based segmentation methods and local region-based superpixel segmentation algorithms are also compared. The results show that the use of the superpixel segmentation algorithm as a pre-segmentation method improves the performance of the cell segmentation as compared to the simple single clustering-based segmentation algorithm. The true positive ratio (TPR), true negative ratio (TNR), F-measure, precision, and overlap ratio (OR) measures are utilized as segmentation performance evaluation. The computation times of the algorithms are also evaluated and presented in the study. Graphical Abstract The visual flowchart of the proposed automatic cell segmentation in histopathological images via two-staged superpixel-based algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call