Abstract
Many theories of attention propose that the contents of working memory (WM) can act as an attentional template, which biases processing in favor of perceptually similar inputs. While support has been found for this claim, it is unclear how attentional templates are generated when searching real-world environments. We hypothesized that in naturalistic settings, attentional templates are commonly generated from conceptual knowledge, an idea consistent with sensorimotor models of knowledge representation. Participants performed a visual search task in the delay period of a WM task, where the item in memory was either a colored disk or a word associated with a color concept (e.g., "Rose," associated with red). During search, we manipulated whether a singleton distractor in the array matched the contents of WM. Overall, we found that search times were impaired in the presence of a memory-matching distractor. Furthermore, the degree of impairment did not differ based on the contents of WM. Put differently, regardless of whether participants were maintaining a perceptually colored disk identical to the singleton distractor, or whether they were simply maintaining a word associated with the color of the distractor, the magnitude of attentional capture was the same. Our results suggest that attentional templates can be generated from conceptual knowledge, in the physical absence of the visual feature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.