Abstract

In this paper, a systematic scheme is proposed and novel technologies are developed to automatically reconstruct a CAD model from a set of point clouds scanned from the boundary surface of an existing object. The proposed scheme is composed of three major steps. In the first step, multiple input point clouds are incrementally integrated into a watertight triangle mesh to recover the object shape. In the second step, mesh segmentation is applied to the triangle mesh to extract individual geometric feature surfaces. Finally, the manifold topology describing the connectivity information between different geometric surfaces is automatically extracted and the mathematical description of each geometric feature is computed. The computed topology and geometry information represented in ACIS modeling kernel form a CAD model that may be used for various downstream applications. Compared with prior work, the proposed approach has the unique advantage that the processes of recognizing geometric features and of reconstructing CAD models are fully automated. Integrated with state of the art scanning devices, the developed model reconstruction method can be used to support reverse engineering of high precision mechanical components. It has potential applications to many engineering problems with a major impact on rapid design and prototyping, shape analysis, and virtual reality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call