Abstract

Accurate building rooftop extraction from high-resolution aerial images is of crucial importance in a wide range of applications. Owing to the varying appearance and large-scale range of scene objects, especially for building rooftops in different scales and heights, single-scale or individual prior-based extraction technique is insufficient in pursuing efficient, generic, and accurate extraction results. The trend toward integrating multiscale or several cue techniques appears to be the best way; thus, such integration is the focus of this paper. We first propose a novel salient rooftop detector integrating four correlative RGB-D priors (depth cue, uniqueness prior, shape prior, and transition surface prior) for improved rooftop extraction to address the preceding complex issues mentioned. Then, these correlative cues are computed from image layers created by our multilevel segmentation and further fused into the state-of-the-art high-order conditional random field (CRF) framework to locate the rooftop. Finally, an iterative optimization strategy is applied for high-quality solving, which can robustly handle varying appearance of building rooftops. Performance evaluations in the SZTAKI-INRIA benchmark data sets show that our method outperforms the traditional color-based algorithm and the original high-order CRF algorithm and its variants. The proposed algorithm is also evaluated and found to produce consistently satisfactory results for various large-scale, real-world data sets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call