Abstract

Bridge is among the zero-sum games for which artificial intelligence has not yet outperformed expert human players. The main difficulty lies in the bidding phase of bridge, which requires cooperative decision making under partial information. Existing artificial intelligence systems for bridge bidding rely on and are thus restricted by human-designed bidding systems or features. In this work, we propose a pioneering bridge bidding system without the aid of human domain knowledge. The system is based on a novel deep reinforcement learning model, which extracts sophisticated features and learns to bid automatically based on raw card data. The model includes an upper-confidence-bound algorithm and additional techniques to achieve a balance between exploration and exploitation. Our experiments validate the promising performance of our proposed model. In particular, the model advances from having no knowledge about bidding to achieving superior performance when compared with a champion-winning computer bridge program that implements a human-designed bidding system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.