Abstract

Experimental ischemic stroke models play an essential role in understanding the mechanisms of cerebral ischemia and evaluating the development of pathological extent. An important precursor to the investigation of ischemic strokes associated with rodents is the brain extraction and hemisphere segmentation in rat brain diffusion-weighted imaging (DWI) and T2-weighted MRI (T2WI) images. Accurate and reliable image segmentation tools for extracting the rat brain and hemispheres in the MR images are critical in subsequent processes, such as lesion identification and injury analysis. This study is an attempt to investigate rat brain extraction and hemisphere segmentation algorithms that are practicable in both DWI and T2WI images. To automatically perform brain extraction, the proposed framework is based on an efficient geometric deformable model. By introducing an additional image force in response to the rat brain characteristics into the skull stripping model, we establish a unique rat brain extraction scheme in DWI and T2WI images. For the subsequent hemisphere segmentation, we develop an efficient brain feature detection algorithm to approximately separate the rat brain. A refinement process is enforced by constructing a gradient vector flow in the proximity of the midsurface, where a parametric active contour is attracted to achieve hemisphere segmentation. Extensive experiments with 55 DWI and T2WI subjects were executed in comparison with the state-of-the-art methods. Experimental results indicated that our rat brain extraction and hemisphere segmentation schemes outperformed the competitive methods and exhibited high performance both qualitatively and quantitatively. For rat brain extraction, the average Dice scores were 97.13% and 97.42% in DWI and T2WI image volumes, respectively. Rat hemisphere segmentation results based on the Hausdorff distance metric revealed average values of 0.17 and 0.15mm for DWI and T2WI subjects, respectively. We believe that the established frameworks are advantageous to facilitate preclinical stroke investigation and relevant neuroscience research that requires accurate brain extraction and hemisphere segmentation using rat DWI and T2WI images.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call