Abstract

Closing the feedback loop from coverage data to the stimuli generator is one of the main challenges in the verification process. Typically, verification engineers with deep domain knowledge manually prepare a set of stimuli generation directives for that purpose. Bayesian networks based CDG (coverage directed generation) systems have been successfully used to assist the process by automatically closing this feedback loop. However, constructing these CDG systems requires manual effort and a certain amount of domain knowledge from a machine learning specialist. We propose a new method that boosts coverage in the early stages of the verification process with minimal effort, namely a fully automatic construction of a CDG system that requires no domain knowledge. Experimental results on a real-life cross-product coverage model demonstrate the efficiency of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.