Abstract

The purpose of this study was to evaluate the efficiency of automatic bone removal in dual-energy CT angiography (CTA) of the trunk. Nineteen patients underwent dual-energy CTA of the trunk (tube A, 140 kV; tube B, 100 kV). In addition to the dual-energy dataset, an image equivalent to that of a standard 120-kV single-energy examination was generated with both tubes. Automated bone segmentation was performed on both datasets, and the results were analyzed. The time required for and subjective image quality of the maximum intensity projections (MIPs) generated were evaluated. Errors in bone segmentation were found for 1.5% of bones on dual-energy images and 12.4% of bones on single-energy images (p < 0.01). The most important differences were found in the rib cage, sternum, and pelvis. The times required for postprocessing of MIPs were similar for the dual-energy (113.5 seconds) and single-energy (106.8 seconds) techniques. The subjective image quality of the arteries was considered better for dual-energy CTA (4.5 points) than for single-energy CTA (4.1 points) owing to false cutoff of vessels during the bone removal process on the single-energy images (p = 0.026). For CTA of the trunk, the dual-energy postprocessing capabilities for 3D visualization are superior to the threshold-based bone removal of single-energy CT. Dual-energy CTA can generate boneless MIP images of substantial quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.