Abstract
Ball bearings are integral elements in most rotating manufacturing machineries. While detecting defective bearing is relatively straightforward, discovering the source of defect requires advanced signal processing techniques. This paper proposes an automatic bearing defect diagnosis method based on Swarm Rapid Centroid Estimation (SRCE) and Hidden Markov Model (HMM). Using the defect frequency signatures extracted with Wavelet Kurtogram and Cepstral Liftering, SRCE+HMM achieved on average the sensitivity, specificity, and error rate of 98.02%, 96.03%, and 2.65%, respectively, on the bearing fault vibration data provided by Case School of Engineering of the Case Western Reserve University (CSE) which warrants further investigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering Applications of Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.