Abstract
In order to resolve the problem incurred by low efficient manual classification of tremendous aurora images, an automatic aurora images classification system for huge dataset application is proposed. First, static aurora images are decomposed into texture part and cartoon part with a method called Morphological Component Analysis (MCA). Then features extracted from texture part are classified by three classification methods: nearest neighbor (NN), Support Vector Machine (SVM) with RBF kernel and SVM with linear kernel. The experiment exhibited the classification accuracy improved by 10%, of which, the SVM with linear kernel is much faster and is therefore suitable for massive data processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.