Abstract

The automatic assessment of music performance has become an area of increasing interest due to the growing number of technology-enhanced music learning systems. In most of these systems, the assessment of musical performance is based on pitch and onset accuracy, but very few pay attention to other important aspects of performance, such as sound quality or timbre. This is particularly true in violin education, where the quality of timbre plays a significant role in the assessment of musical performances. However, obtaining quantifiable criteria for the assessment of timbre quality is challenging, as it relies on consensus among the subjective interpretations of experts. We present an approach to assess the quality of timbre in violin performances using machine learning techniques. We collected audio recordings of several tone qualities and performed perceptual tests to find correlations among different timbre dimensions. We processed the audio recordings to extract acoustic features for training tone-quality models. Correlations among the extracted features were analyzed and feature information for discriminating different timbre qualities were investigated. A real-time feedback system designed for pedagogical use was implemented in which users can train their own timbre models to assess and receive feedback on their performances.

Highlights

  • In recent years, several computational systems have been developed with the aim of enhancing music education and instrument tuition

  • Our aim is firstly to study the correlations between expert-defined tone quality semantic labels found in the literature and the features extracted from the audio signal; secondly, to generate machine learning models to classify different tone quality dimensions of violin sounds based on audio features; and thirdly to incorporate the obtained models in a technologyenhanced violin learning system to provide real-time feedback of such tonal dimensions

  • We have presented a machine learning approach for the automatic assessment of the quality of tone in violin performance

Read more

Summary

Introduction

Several computational systems have been developed with the aim of enhancing music education and instrument tuition. In these systems automatic assessment of musical performance plays a central role. Human assessment is often subjective, making the implementation of an automatic assessment system a significant challenge. Assessment relies on consensus of highly trained experts who produce subjective interpretations of performance (Thompson and Williamon, 2003; McPherson and Schubert, 2004). Even reducing musical performance to its simplest component part (i.e., a single tone) still poses a challenge (Zdzinski, 1991).

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call