Abstract
Deep learning-based computer vision techniques have high efficiency in assessing concrete cracks from images, and the assessment can be automated using robots for higher efficiency. However, assessment accuracy is often compromised by low-quality images. This paper presents a Conditional Generative Adversarial Network (CGAN)-based approach to restore low-light, overexposed, and blurred images. The approach integrates attention mechanisms and residual learning and uses Wasserstein loss with gradient penalty. Crack assessment results show that the proposed approach outperforms state-of-the-art methods, regarding structural similarity (SSIM: 0.78 for deblurring, 0.95 for low-light enhancement, and 0.96 for overexposure correction) and peak signal-to-noise ratio (PSNR: 28.6 for deblurring, 31.4 for low-light enhancement, and 31.6 for overexposure correction). Restored images have been used to train a deep learning model for assessing concrete cracks. The Intersection over Union (IoU) and F1 score of crack segmentation are higher than 0.98 and 0.99, respectively, revealing high accuracy in crack assessment tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.