Abstract

The accurate detection of P-wave arrival time is imperative for determining the hypocenter location of an earthquake. However, precise detection of onset time becomes more difficult when the signal-to-noise ratio (SNR) of the seismic data is low, such as during microearthquakes. In this letter, a stacked denoising autoencoder (SDAE) is proposed to smooth the background noise. The SDAE acts as a denoising filter for the seismic data. In the proposed algorithm, the SDAE is utilized to reduce background noise such that the onset time becomes more clear and sharp. Afterward, a hard decision with one threshold is used to detect the onset time of the event. The proposed algorithm is evaluated on both synthetic and field seismic data. As a result, the proposed algorithm outperforms the short-time average/long-time average and the Akaike information criterion algorithms. The proposed algorithm accurately picks the onset time of 94.1% for 407 field seismic waveforms with a standard deviation error of 0.10 s. In addition, the results indicate that the proposed algorithm can pick arrival times accurately for weak SNR seismic data with SNR higher than −14 dB.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.