Abstract
Brain–computer interface (BCI) systems are becoming increasingly popular nowadays. Electroencephalogram (EEG) signals recorded by BCI systems are however frequently contaminated by artifacts and while applying any artifact removal algorithm, precautions should be taken not to remove useful information. Widely and most popular approaches to remove artifacts from EEG are based on independent component analysis (ICA), which relies on the multichannel EEG signal and needs an expert to manually pick the artifactual component to remove it or needs reference signals of artifacts. Recently, wavelet-based approaches have been proposed and demonstrated as well-suited for single channel EEG signal. However, control over the loss of information still remains an issue. Therefore, in this paper, we propose an algorithm based on wavelet packet decomposition (WPD) that allows controlling the suppression or removal of presumed artifacts, by tuning intuitive parameters. The proposed algorithm has three operating modes and two tuning parameters. We study the performance of the proposed algorithm and compare it with ICA-based approaches and a comparative wavelet-based approach on an EEG dataset collected for a study of auditory tasks. In addition to visual inspection, spectral response and distribution, the results of predictive tasks show that the proposed approach performs better than ICA-based approach and performance can be further improved by properly tuning the parameters for an individual predictive model. The proposed approach also performs better in terms of retention of neural information and removal of artifactual noise measured by mutual information and correlation coefficient, as compared to the comparative wavelet-based approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.