Abstract
General-purpose GPU-based systems are highly attractive, as they give potentially massive performance at little cost. Realizing such potential is challenging due to the complexity of programming. This article presents a compiler-based approach to automatically generate optimized OpenCL code from data parallel OpenMP programs for GPUs. A key feature of our scheme is that it leverages existing transformations, especially data transformations, to improve performance on GPU architectures and uses automatic machine learning to build a predictive model to determine if it is worthwhile running the OpenCL code on the GPU or OpenMP code on the multicore host. We applied our approach to the entire NAS parallel benchmark suite and evaluated it on distinct GPU-based systems. We achieved average (up to) speedups of 4.51× and 4.20× (143× and 67×) on Core i7/NVIDIA GeForce GTX580 and Core i7/AMD Radeon 7970 platforms, respectively, over a sequential baseline. Our approach achieves, on average, greater than 10× speedups over two state-of-the-art automatic GPU code generators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Architecture and Code Optimization
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.