Abstract

In this study, we introduce a genetic algorithm (GA) into the catenary theory model to achieve automatic and inverse design for terahertz (THz) metasurface absorbers. The GA method was employed by seeking optimal dispersion distributions to achieve broadband impedance matching. A THz dual-metasurface absorber was designed using the proposed approach. The designed metasurface absorber exhibits an absorbance exceeding 88% at 0.21-5 THz. Compared to the traditional design method, the proposed method can reduce time consumption and find the optimal result to achieve high performance. The investigations provide important guidance and a promising approach for designing metasurface-based devices for practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call