Abstract
In this paper we developed a modified Hidden Markov Model (HMM) to analyze the raw nanopore experimental data. Traditionally, prior to further analysis the measured nanopore data must be pre-filtered, but the filtering usually distorts the waveform of the blockage current, especially for rapid translocations and bumping blockages. The HMM is known to be robust with respect to strong noise and thus suitable for processing the raw nanopore data, but its performance is susceptible to the setting of initial parameters. To overcome this problem, we use the Fuzzy c-Means (FCM) algorithm to initialize the HMM parameters in this work. Then we use the Viterbi training algorithm to optimize the HMM. Finally, both the simulated and experimental data analysis results are presented to show the effectiveness of the proposed method for detection of the nanopore current blockage events in analytical chemistry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.