Abstract

In current research with laboratory animals, observing their dynamic behavior or locomotion is a labor-intensive task. Automatic continuous monitoring can provide quantitative data on each animal's condition and coordination ability. The objective of the present work is to develop an automated mouse observation system integrated with a conventional open-field test for motor function evaluation. Data were acquired from 86 mice having a targeted disruption of the arylsulphatase A (ASA) gene and having lowered coordinated locomotion abilities as a symptom. The mice used were 36 heterozygotes (12 females) and 50 knockout mice (30 females) at the age of 6 months. The mice were placed one at a time into the test setup, which consisted of a Plexiglas cage (53x34.5x26 cm) and two fluorescent bulbs for proper illumination. The transparent cage allowed images to be captured from underneath the cage, so image information could be obtained about the dynamic variation of the positions of the limbs of the mice for gait reconstruction. Every mouse was recorded for 10 min. Background subtraction and color filtering were used to measure and calculate image features, which are variables that contain crucial information, such as the mouse's position, orientation, body outline, and possible locations for the mouse's paws. A set of heuristic rules was used to prune implausible paw features and label the remaining ones as front/hind and left/right. After we had pruned the implausible paw features, the paw features that were consistent over subsequent images were matched to footprints. Finally, from the measured footprint sequence, eight parameters were calculated in order to quantify the gait of the mouse. This automatic observation technique can be integrated with a regular open-field test, where the trajectory and motor function of a free-moving mouse are measured simultaneously.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.