Abstract

Many studies have proven that biphasic defibrillation pulses are more efficient than the damped sinusoid monopolar waveform. Transthoracic resistance was shown to change during the two phases. On the other hand, it was proven that transthoracic resistance plays an important role in the defibrillation process, yielding the current for selected energy or voltage. Pre-shock measurement of the resistance may lead to improved selection. Stabilized current defibrillators are of low stored-to-delivered energy ratio. Therefore, automatic dynamic adjustment of some defibrillator parameters with respect to transthoracic resistance changes seems rational. An approach is known for modifying the pulse duration, in order to deliver a selected energy. A method is proposed here and an experimental defibrillator is developed for dynamic pulse duration adjustment with the purpose of obtaining a desired optimal timecourse of the cardiac cell transmembrane potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.