Abstract

An automatic adaptive refinement procedure for the analysis of shell structures using the nine-node degenerated solid shell element is suggested. The basic adaptive refinement principle and the effects of singularities and boundary layers on the convergence rate of the nine-node element used are discussed. A new stress recovery procedure based on the patch convective co-ordinate system concept is developed for the construction of a continuous smoothed stress field over the shell domains. The stress recovery procedure is easy to implement, requires a modest computational effort and needs only local patch information. It can be applied to shells with non-uniform thickness as well as to multi-layered shell structures. The smoothed recovered stress obtained is then used with the Zienkiewicz and Zhu error estimator for a posteriori error estimation during the adaptive refinement analysis. Numerical results which are in good agreement with theoretical predictions are obtained and they indicate that the current adaptive refinement procedure can eliminate the effect of singularities inside the problem domains so that a near-optimal convergence rate is achieved in all the numerical examples. This also indicates that the stress recovery procedure can produce an accurate stress field and as a result the error estimator can reflect the error distribution of the finite element solution. Even though in the current study only one type of element is used in the analysis, the whole adaptive refinement scheme can be readily applied to any other types of degenerated solid element. © 1997 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.